Residual dipolar couplings between quadrupolar nuclei in solid state nuclear magnetic resonance at arbitrary fields

نویسندگان

  • Sungsool Wi
  • Veronica Frydman
  • Lucio Frydman
چکیده

Second-order dipolar effects arise when a nucleus S is in close proximity to a quadrupolar spin I. These couplings originate from cross correlations between quadrupolar and dipolar interactions, and have the notable characteristic of not being susceptible to averaging by magic-angle-spinning. Therefore they can originate noticeable splittings in high resolution solid state nuclear magnetic resonance ~NMR! spectra, as has been observed repeatedly for S51/2. With the advent of high resolution half-integer quadrupole spectroscopy, such effects have now also been noticed in higher (S53/2,5/2,...) spin systems. Within the last year these couplings have been reported for a number of complexes and analyzed in the high-field limit, when I’s Larmor frequency largely exceeds its quadrupolar coupling. The present study discusses the generalization of these analyses to arbitrary quadrupolar/Zeeman ratios. The predictions of the essentially numerical treatment that results compare well with previously derived high-field analytical models, as well as with experimental solid state NMR spectra observed in a borane compound possessing a B– As spin pair. An alternative analytical variant that can account for these effects in the low-field limit is also derived on the basis of average Hamiltonian theory; its results agree well with the predictions obtained from general numerical calculations of one-dimensional S spectra, but present peculiarities in the bi-dimensional NMR line shapes whose origins are briefly discussed. © 2001 American Institute of Physics. @DOI: 10.1063/1.1357440#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual dipolar couplings between quadrupolar nuclei in high resolution solid state NMR: Description and observations in the high-field limit

Nonsecular dipolar couplings between spin2 nuclei that are in close proximity to quadrupolar spins have been extensively documented in solid state nuclear magnetic resonance ~NMR!, particularly when involving directly bonded S5C, I5N spin pairs. These couplings arise due to the quadrupole-induced tilting of I’s nuclear spin quantization axes, and their most notable characteristic is that they c...

متن کامل

Residual dipolar coupling between quadrupolar nuclei under magic-angle spinning and double-rotation conditions.

Residual dipolar couplings between spin-1/2 and quadrupolar nuclei are often observed and exploited in the magic-angle spinning (MAS) NMR spectra of spin-1/2 nuclei. These orientation-dependent splittings contain information on the dipolar interaction, which can be translated into structural information. The same type of splittings may also be observed for pairs of quadrupolar nuclei, although ...

متن کامل

Coherence transfer between spy nuclei and nitrogen-14 in solids.

Coherence transfer from 'spy nuclei' such as (1)H or (13)C (S=1/2) was used to excite single- or double-quantum coherences of (14)N nuclei (I=1) while the S spins were aligned along the static field, in the manner of heteronuclear single-quantum correlation (HSQC) spectroscopy. For samples spinning at the magic angle, coherence transfer can be achieved through a combination of scalar couplings ...

متن کامل

Rotary resonance recoupling for half-integer quadrupolar nuclei in solid-state nuclear magnetic resonance spectroscopy

Investigations were made of rotary resonance recouplings (R) of chemical shift anisotropy ~CSA!, heteronuclear dipolar ~HTD!, and homonuclear dipolar ~HMD! couplings involving half-integer quadrupolar nuclei under magic-angle sample spinning condition. Under rotary resonance conditions provided by a low amplitude rf field and a high spinning speed, the spectrum of the central transition coheren...

متن کامل

Solution-state dynamic nuclear polarization at high magnetic field.

The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nucle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001